3.71 \(\int \csc ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx\)

Optimal. Leaf size=124 \[ \frac {\sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{f}-\frac {(a+2 b) \tanh ^{-1}\left (\frac {\sqrt {a+b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{2 f \sqrt {a+b}}-\frac {\cot (e+f x) \csc (e+f x) \sqrt {a+b \sec ^2(e+f x)}}{2 f} \]

[Out]

arctanh(sec(f*x+e)*b^(1/2)/(a+b*sec(f*x+e)^2)^(1/2))*b^(1/2)/f-1/2*(a+2*b)*arctanh(sec(f*x+e)*(a+b)^(1/2)/(a+b
*sec(f*x+e)^2)^(1/2))/f/(a+b)^(1/2)-1/2*cot(f*x+e)*csc(f*x+e)*(a+b*sec(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 124, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {4134, 467, 523, 217, 206, 377, 207} \[ \frac {\sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{f}-\frac {(a+2 b) \tanh ^{-1}\left (\frac {\sqrt {a+b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{2 f \sqrt {a+b}}-\frac {\cot (e+f x) \csc (e+f x) \sqrt {a+b \sec ^2(e+f x)}}{2 f} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^3*Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

(Sqrt[b]*ArcTanh[(Sqrt[b]*Sec[e + f*x])/Sqrt[a + b*Sec[e + f*x]^2]])/f - ((a + 2*b)*ArcTanh[(Sqrt[a + b]*Sec[e
 + f*x])/Sqrt[a + b*Sec[e + f*x]^2]])/(2*Sqrt[a + b]*f) - (Cot[e + f*x]*Csc[e + f*x]*Sqrt[a + b*Sec[e + f*x]^2
])/(2*f)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 467

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*n*(p + 1)), x] - Dist[e^n/(b*n*(p + 1)), Int[(e*x)^
(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0] &
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 4134

Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Cos[e + f*x], x]}, Dist[1/(f*ff^m), Subst[Int[((-1 + ff^2*x^2)^((m - 1)/2)*(a + b*(c*ff*x)^
n)^p)/x^(m + 1), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (Gt
Q[m, 0] || EqQ[n, 2] || EqQ[n, 4])

Rubi steps

\begin {align*} \int \csc ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^2 \sqrt {a+b x^2}}{\left (-1+x^2\right )^2} \, dx,x,\sec (e+f x)\right )}{f}\\ &=-\frac {\cot (e+f x) \csc (e+f x) \sqrt {a+b \sec ^2(e+f x)}}{2 f}+\frac {\operatorname {Subst}\left (\int \frac {a+2 b x^2}{\left (-1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\sec (e+f x)\right )}{2 f}\\ &=-\frac {\cot (e+f x) \csc (e+f x) \sqrt {a+b \sec ^2(e+f x)}}{2 f}+\frac {b \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\sec (e+f x)\right )}{f}+\frac {(a+2 b) \operatorname {Subst}\left (\int \frac {1}{\left (-1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\sec (e+f x)\right )}{2 f}\\ &=-\frac {\cot (e+f x) \csc (e+f x) \sqrt {a+b \sec ^2(e+f x)}}{2 f}+\frac {b \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{f}+\frac {(a+2 b) \operatorname {Subst}\left (\int \frac {1}{-1-(-a-b) x^2} \, dx,x,\frac {\sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{2 f}\\ &=\frac {\sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{f}-\frac {(a+2 b) \tanh ^{-1}\left (\frac {\sqrt {a+b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{2 \sqrt {a+b} f}-\frac {\cot (e+f x) \csc (e+f x) \sqrt {a+b \sec ^2(e+f x)}}{2 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.43, size = 163, normalized size = 1.31 \[ \frac {\cos (e+f x) \sqrt {a+b \sec ^2(e+f x)} \left (2 \sqrt {b} (a+b) \tanh ^{-1}\left (\frac {\sqrt {-a \sin ^2(e+f x)+a+b}}{\sqrt {b}}\right )-\sqrt {a+b} (a+2 b) \tanh ^{-1}\left (\frac {\sqrt {-a \sin ^2(e+f x)+a+b}}{\sqrt {a+b}}\right )-\left ((a+b) \csc ^2(e+f x) \sqrt {-a \sin ^2(e+f x)+a+b}\right )\right )}{\sqrt {2} f (a+b) \sqrt {a \cos (2 (e+f x))+a+2 b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^3*Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

(Cos[e + f*x]*Sqrt[a + b*Sec[e + f*x]^2]*(2*Sqrt[b]*(a + b)*ArcTanh[Sqrt[a + b - a*Sin[e + f*x]^2]/Sqrt[b]] -
Sqrt[a + b]*(a + 2*b)*ArcTanh[Sqrt[a + b - a*Sin[e + f*x]^2]/Sqrt[a + b]] - (a + b)*Csc[e + f*x]^2*Sqrt[a + b
- a*Sin[e + f*x]^2]))/(Sqrt[2]*(a + b)*f*Sqrt[a + 2*b + a*Cos[2*(e + f*x)]])

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 867, normalized size = 6.99 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^3*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(2*(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + ((a + 2*b)*cos(f*x + e)^2 - a - 2*b
)*sqrt(a + b)*log(2*(a*cos(f*x + e)^2 - 2*sqrt(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)
 + a + 2*b)/(cos(f*x + e)^2 - 1)) + 2*((a + b)*cos(f*x + e)^2 - a - b)*sqrt(b)*log((a*cos(f*x + e)^2 + 2*sqrt(
b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + 2*b)/cos(f*x + e)^2))/((a + b)*f*cos(f*x + e)^2
- (a + b)*f), 1/2*(((a + 2*b)*cos(f*x + e)^2 - a - 2*b)*sqrt(-a - b)*arctan(sqrt(-a - b)*sqrt((a*cos(f*x + e)^
2 + b)/cos(f*x + e)^2)*cos(f*x + e)/(a + b)) + (a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e
) + ((a + b)*cos(f*x + e)^2 - a - b)*sqrt(b)*log((a*cos(f*x + e)^2 + 2*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos
(f*x + e)^2)*cos(f*x + e) + 2*b)/cos(f*x + e)^2))/((a + b)*f*cos(f*x + e)^2 - (a + b)*f), -1/4*(4*((a + b)*cos
(f*x + e)^2 - a - b)*sqrt(-b)*arctan(sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/b) - 2*
(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) - ((a + 2*b)*cos(f*x + e)^2 - a - 2*b)*sqrt(a
 + b)*log(2*(a*cos(f*x + e)^2 - 2*sqrt(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + a + 2
*b)/(cos(f*x + e)^2 - 1)))/((a + b)*f*cos(f*x + e)^2 - (a + b)*f), 1/2*(((a + 2*b)*cos(f*x + e)^2 - a - 2*b)*s
qrt(-a - b)*arctan(sqrt(-a - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/(a + b)) - 2*((a + b)
*cos(f*x + e)^2 - a - b)*sqrt(-b)*arctan(sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/b)
+ (a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e))/((a + b)*f*cos(f*x + e)^2 - (a + b)*f)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^3*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check si
gn: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check si
gn: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)2*(-1/16*sqrt(a*tan(1/2*(f*x+exp(1)))^4+
b*tan(1/2*(f*x+exp(1)))^4-2*a*tan(1/2*(f*x+exp(1)))^2+2*b*tan(1/2*(f*x+exp(1)))^2+a+b)+2*(-1/16*(-(a-b)*(-sqrt
(a+b)*tan(1/2*(f*x+exp(1)))^2+sqrt(a*tan(1/2*(f*x+exp(1)))^4+b*tan(1/2*(f*x+exp(1)))^4-2*a*tan(1/2*(f*x+exp(1)
))^2+2*b*tan(1/2*(f*x+exp(1)))^2+a+b))-sqrt(a+b)*(a+b))/((-sqrt(a+b)*tan(1/2*(f*x+exp(1)))^2+sqrt(a*tan(1/2*(f
*x+exp(1)))^4+b*tan(1/2*(f*x+exp(1)))^4-2*a*tan(1/2*(f*x+exp(1)))^2+2*b*tan(1/2*(f*x+exp(1)))^2+a+b))^2-a-b)-1
/2*b*atan(1/2*(-sqrt(a+b)*tan(1/2*(f*x+exp(1)))^2+sqrt(a+b)+sqrt(a*tan(1/2*(f*x+exp(1)))^4+b*tan(1/2*(f*x+exp(
1)))^4-2*a*tan(1/2*(f*x+exp(1)))^2+2*b*tan(1/2*(f*x+exp(1)))^2+a+b))/sqrt(-b))/sqrt(-b)-1/8*(-a-2*b)*atan((-sq
rt(a+b)*tan(1/2*(f*x+exp(1)))^2+sqrt(a*tan(1/2*(f*x+exp(1)))^4+b*tan(1/2*(f*x+exp(1)))^4-2*a*tan(1/2*(f*x+exp(
1)))^2+2*b*tan(1/2*(f*x+exp(1)))^2+a+b))/sqrt(-a-b))/sqrt(-a-b)+sqrt(a+b)*(-a-2*b)*ln(abs((a+b)*(-sqrt(a+b)*ta
n(1/2*(f*x+exp(1)))^2+sqrt(a*tan(1/2*(f*x+exp(1)))^4+b*tan(1/2*(f*x+exp(1)))^4-2*a*tan(1/2*(f*x+exp(1)))^2+2*b
*tan(1/2*(f*x+exp(1)))^2+a+b))+sqrt(a+b)*(a-b)))/(-16*a-16*b)))*sign(cos(f*x+exp(1)))/f

________________________________________________________________________________________

maple [B]  time = 1.72, size = 3015, normalized size = 24.31 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^3*(a+b*sec(f*x+e)^2)^(1/2),x)

[Out]

-1/8/f*(-1+cos(f*x+e))*(-2*cos(f*x+e)*(a+b)^(3/2)*4^(1/2)*b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*
a+4*cos(f*x+e)^2*(a+b)^(3/2)*4^(1/2)*b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a-4*cos(f*x+e)^2*(a+b
)^(3/2)*4^(1/2)*arctanh(1/8*(-1+cos(f*x+e))*(cos(f*x+e)*4^(1/2)-2*cos(f*x+e)-4^(1/2)-2)/sin(f*x+e)^2/((b+a*cos
(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^(1/2)*4^(1/2))*a*b-4^(1/2)*b^(1/2)*ln(-2*(-1+cos(f*x+e))*(((b+a*cos(f*x+e
)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*(a+b)^(1/2)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*
cos(f*x+e)+b)/sin(f*x+e)^2/(a+b)^(1/2))*a^3-5*4^(1/2)*b^(5/2)*ln(-4*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/
2)*cos(f*x+e)*(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x+
e)))*a+4*(a+b)^(3/2)*4^(1/2)*arctanh(1/8*(-1+cos(f*x+e))*(cos(f*x+e)*4^(1/2)-2*cos(f*x+e)-4^(1/2)-2)/sin(f*x+e
)^2/((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^(1/2)*4^(1/2))*b^2+4*cos(f*x+e)^2*4^(1/2)*b^(7/2)*ln(-4*(-1+
cos(f*x+e))*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*(a+b)^(1/2)+((b+a*cos(f*x+e)^2)/(1+cos(f*x
+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+b)/sin(f*x+e)^2/(a+b)^(1/2))-2*cos(f*x+e)^2*4^(1/2)*b^(7/2)*ln(-2*(-1+c
os(f*x+e))*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*(a+b)^(1/2)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+
e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+b)/sin(f*x+e)^2/(a+b)^(1/2))-4*4^(1/2)*b^(3/2)*ln(-4*(((b+a*cos(f*x+e)^2
)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b
)^(1/2)+b)/(-1+cos(f*x+e)))*a^2-4^(1/2)*b^(1/2)*ln(-4*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*
(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x+e)))*a^3-4*4^(
1/2)*b^(7/2)*ln(-4*(-1+cos(f*x+e))*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*(a+b)^(1/2)+((b+a*c
os(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+b)/sin(f*x+e)^2/(a+b)^(1/2))-8*cos(f*x+e)^2*(a+b
)^(3/2)*b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(3/2)-16*cos(f*x+e)*(a+b)^(3/2)*b^(1/2)*((b+a*cos(f*x+e)
^2)/(1+cos(f*x+e))^2)^(3/2)+2*(a+b)^(3/2)*4^(1/2)*b^(3/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)+3*4^(1/2
)*b^(5/2)*ln(-2*(-1+cos(f*x+e))*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*(a+b)^(1/2)+((b+a*cos(
f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+b)/sin(f*x+e)^2/(a+b)^(1/2))*a-8*4^(1/2)*b^(5/2)*ln
(-4*(-1+cos(f*x+e))*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*(a+b)^(1/2)+((b+a*cos(f*x+e)^2)/(1
+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+b)/sin(f*x+e)^2/(a+b)^(1/2))*a-4*4^(1/2)*b^(3/2)*ln(-4*(-1+cos(
f*x+e))*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*(a+b)^(1/2)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))
^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+b)/sin(f*x+e)^2/(a+b)^(1/2))*a^2-8*(a+b)^(3/2)*b^(1/2)*((b+a*cos(f*x+e)^2)/
(1+cos(f*x+e))^2)^(3/2)+2*cos(f*x+e)^2*4^(1/2)*b^(7/2)*ln(-4*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(
f*x+e)*(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x+e)))+5*
cos(f*x+e)^2*4^(1/2)*b^(5/2)*ln(-4*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*(a+b)^(1/2)+a*cos(f
*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x+e)))*a+8*cos(f*x+e)^2*4^(1/2)*b^(
5/2)*ln(-4*(-1+cos(f*x+e))*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*(a+b)^(1/2)+((b+a*cos(f*x+e
)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+b)/sin(f*x+e)^2/(a+b)^(1/2))*a-3*cos(f*x+e)^2*4^(1/2)*b^
(5/2)*ln(-2*(-1+cos(f*x+e))*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*(a+b)^(1/2)+((b+a*cos(f*x+
e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+b)/sin(f*x+e)^2/(a+b)^(1/2))*a-4*cos(f*x+e)^2*(a+b)^(3/
2)*4^(1/2)*arctanh(1/8*(-1+cos(f*x+e))*(cos(f*x+e)*4^(1/2)-2*cos(f*x+e)-4^(1/2)-2)/sin(f*x+e)^2/((b+a*cos(f*x+
e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^(1/2)*4^(1/2))*b^2+4*cos(f*x+e)^2*4^(1/2)*b^(3/2)*ln(-4*(((b+a*cos(f*x+e)^2)/(
1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(
1/2)+b)/(-1+cos(f*x+e)))*a^2+4*cos(f*x+e)^2*4^(1/2)*b^(3/2)*ln(-4*(-1+cos(f*x+e))*(((b+a*cos(f*x+e)^2)/(1+cos(
f*x+e))^2)^(1/2)*cos(f*x+e)*(a+b)^(1/2)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+b
)/sin(f*x+e)^2/(a+b)^(1/2))*a^2+cos(f*x+e)^2*4^(1/2)*b^(1/2)*ln(-4*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2
)*cos(f*x+e)*(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x+e
)))*a^3+cos(f*x+e)^2*4^(1/2)*b^(1/2)*ln(-2*(-1+cos(f*x+e))*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*
x+e)*(a+b)^(1/2)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+b)/sin(f*x+e)^2/(a+b)^(1
/2))*a^3-2*cos(f*x+e)*(a+b)^(3/2)*4^(1/2)*b^(3/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)+2*4^(1/2)*b^(7/2
)*ln(-2*(-1+cos(f*x+e))*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*(a+b)^(1/2)+((b+a*cos(f*x+e)^2
)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-a*cos(f*x+e)+b)/sin(f*x+e)^2/(a+b)^(1/2))-2*4^(1/2)*b^(7/2)*ln(-4*(((b+a
*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*(a+b)^(1/2)+a*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^
2)^(1/2)*(a+b)^(1/2)+b)/(-1+cos(f*x+e)))-2*(a+b)^(3/2)*4^(1/2)*b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(
1/2)*a+4*(a+b)^(3/2)*4^(1/2)*arctanh(1/8*(-1+cos(f*x+e))*(cos(f*x+e)*4^(1/2)-2*cos(f*x+e)-4^(1/2)-2)/sin(f*x+e
)^2/((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^(1/2)*4^(1/2))*a*b)*cos(f*x+e)*((b+a*cos(f*x+e)^2)/cos(f*x+e
)^2)^(1/2)/((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)/sin(f*x+e)^4/(a+b)^(5/2)/b^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sec \left (f x + e\right )^{2} + a} \csc \left (f x + e\right )^{3}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^3*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(f*x + e)^2 + a)*csc(f*x + e)^3, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}}}{{\sin \left (e+f\,x\right )}^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(e + f*x)^2)^(1/2)/sin(e + f*x)^3,x)

[Out]

int((a + b/cos(e + f*x)^2)^(1/2)/sin(e + f*x)^3, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a + b \sec ^{2}{\left (e + f x \right )}} \csc ^{3}{\left (e + f x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**3*(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(e + f*x)**2)*csc(e + f*x)**3, x)

________________________________________________________________________________________